Efficient estimation of parameters in marginals in semiparametric multivariate models∗
نویسندگان
چکیده
We consider a general multivariate model where univariate marginal distributions are known up to a common parameter vector and we are interested in estimating that vector without assuming anything about the joint distribution, except for the marginals. If we assume independence between the marginals and maximize the resulting quasilikelihood, we obtain a consistent but inefficient estimate. If we assume a parametric copula (other than independence) we obtian a full MLE, which is efficient but only under correct copula specification and badly biased if the copula is misspecified. Instead we propose a sieve MLE estimator which improves over QMLE but does not suffer the drawbacks of the full MLE. We model the unknown part of the joint distribution using the Bernstein-Kantorovich polynomial copula and assess the resulting improvement over QMLE and over misspecified FMLE in terms of relative efficiency and robustness. We derive the asymptotic distribution of the new estimator and show that it reaches the semiparametric efficiency bound. Simulations suggest that the sieve MLE can be almost as efficient as FMLE relative to QMLE provided there is enough dependence between the marginals. An application using insurance company loss and expense data demonstrates empirical relevance of the estimator. JEL Classification: C13
منابع مشابه
Efficient estimation of parameters in marginals in semiparametric multivariate models Preliminary and Incomplete – Please do not cite
Recent literature on semiparametric copula models focused on the situation when the marginals are specified nonparametrically and the copula function is given a parametric form. For example, this setup is used in Chen, Fan and Tsyrennikov (2006) [Efficient Estimation of Semiparametric Multivariate Copula Models, JASA] who focus on the efficient estimation of copula parameters. We consider a rev...
متن کاملEstimating and Evaluating the Predictive Abilities of Semiparametric Multivariate Models with Application to Risk Management
In this paper we propose a new semiparametric procedure for estimating multivariate models with conditioning variables. The semiparametric model is based on the parametric conditional copula of Patton (2005a) and nonparametric conditional marginals. To avoid the curse of dimensionality in the estimation of the latter, we propose a dimension reduction technique. The marginals are estimated using...
متن کاملEmpirical likelihood for heteroscedastic partially linear models
AMS 2000 subject classifications: 62F35 62G20 Keywords: Double robustness Empirical likelihood Heteroscedasticity Kernel estimation Partially linear model Semiparametric efficiency a b s t r a c t We make empirical-likelihood-based inference for the parameters in heteroscedastic partially linear models. Unlike the existing empirical likelihood procedures for heteroscedastic partially linear mod...
متن کاملSemiparametric estimation in general repeated measures problems
The paper considers a wide class of semiparametric problems with a parametric part for some covariate effects and repeated evaluations of a nonparametric function. Special cases in our approach include marginal models for longitudinal or clustered data, conditional logistic regression for matched case–control studies, multivariate measurement error models, generalized linear mixed models with a...
متن کاملGeneralized Ridge Regression Estimator in Semiparametric Regression Models
In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...
متن کامل